Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSphere ; 9(4): e0068523, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38501828

RESUMO

Staphylococcus aureus is a leading cause of skin and soft tissue infections. Colonization by this bacterium is increased in individuals with chronic cutaneous diseases such as atopic dermatitis, psoriasis, and bullous pemphigoid. The greater abundance of S. aureus on the skin of subjects with atopic dermatitis in particular has been linked to recurrent cutaneous infections. The primary cell type of the epidermal layer of the skin is the keratinocyte, and it is thought that S. aureus internalized in keratinocytes associates with an increased incidence of skin infections. This study addresses whether keratinocyte differentiation and/or inflammation, two important characteristics altered in cutaneous diseases, influence bacterial internalization. To do this, S. aureus internalization was measured in immortalized and primary keratinocytes that were differentiated using high Ca2+-containing media and/or exposed to cytokines characteristic of atopic dermatitis (IL-4 and IL-13) or psoriasis (IL-17A and IL-22) skin. Our results indicate that S. aureus internalization is uniquely decreased upon keratinocyte differentiation, since this was not observed with another skin-resident bacterium, S. epidermidis. Additionally, treatment with IL-4 + IL-13 diminished bacterial internalization. We interpret this decrease as a mechanism of keratinocyte-based bacterial killing since a similar number of bacterial genomes were detected in cytokine-treated cells, but less viable internalized S. aureus was recovered. Finally, of the receptors reported for S. aureus binding/internalizing into keratinocytes, expression of the α5 component of the α5ß1 integrin was in greatest accordance with the number of internalized bacteria in the context of keratinocyte differentiation.IMPORTANCEIndividuals with chronic cutaneous diseases demonstrate heightened susceptibility for severe and recurrent infections from Staphylococcus aureus. What drives this altered susceptibility remains poorly understood. Previous publications have detected S. aureus as deep as the dermal layer of skin in subjects with atopic dermatitis, suggesting that the cutaneous environment of this disease enables deeper bacterial infiltration than occurs in healthy individuals. This observation indicates that S. aureus has greater opportunity to interact with multiple skin cell types in individuals with chronic inflammatory skin diseases. Identifying the characteristics of the skin that influence bacterial internalization, a common method to establish reservoirs and evade the immune response, is critical for our understanding of S. aureus pathogenesis. The significance of this research is the novel identification of epidermal characteristics that influence S. aureus internalization. With this knowledge, methods can be developed to identify patient populations at greater risk for cutaneous infections.

2.
J Allergy Clin Immunol ; 152(5): 1179-1195, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37315812

RESUMO

BACKGROUND: Atopic dermatitis (AD) is an inflammatory disorder characterized by dominant type 2 inflammation leading to chronic pruritic skin lesions, allergic comorbidities, and Staphylococcus aureus skin colonization and infections. S aureus is thought to play a role in AD severity. OBJECTIVES: This study characterized the changes in the host-microbial interface in subjects with AD following type 2 blockade with dupilumab. METHODS: Participants (n = 71) with moderate-severe AD were enrolled in a randomized (dupilumab vs placebo; 2:1), double-blind study at Atopic Dermatitis Research Network centers. Bioassays were performed at multiple time points: S aureus and virulence factor quantification, 16s ribosomal RNA microbiome, serum biomarkers, skin transcriptomic analyses, and peripheral blood T-cell phenotyping. RESULTS: At baseline, 100% of participants were S aureus colonized on the skin surface. Dupilumab treatment resulted in significant reductions in S aureus after only 3 days (compared to placebo), which was 11 days before clinical improvement. Participants with the greatest S aureus reductions had the best clinical outcomes, and these reductions correlated with reductions in serum CCL17 and disease severity. Reductions (10-fold) in S aureus cytotoxins (day 7), perturbations in TH17-cell subsets (day 14), and increased expression of genes relevant for IL-17, neutrophil, and complement pathways (day 7) were also observed. CONCLUSIONS: Blockade of IL-4 and IL-13 signaling, very rapidly (day 3) reduces S aureus abundance in subjects with AD, and this reduction correlates with reductions in the type 2 biomarker, CCL17, and measures of AD severity (excluding itch). Immunoprofiling and/or transcriptomics suggest a role for TH17 cells, neutrophils, and complement activation as potential mechanisms to explain these findings.


Assuntos
Dermatite Atópica , Infecções Estafilocócicas , Humanos , Dermatite Atópica/genética , Staphylococcus aureus , Anticorpos Monoclonais Humanizados/uso terapêutico , Pele/metabolismo , Infecções Estafilocócicas/tratamento farmacológico , Índice de Gravidade de Doença , Resultado do Tratamento
3.
Int J Mol Sci ; 24(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298195

RESUMO

Little is known about whether type 1 (IFNγ), 2 (IL-4/IL-13), or 3 (IL-17A/IL-22) cytokines affect the susceptibility of keratinocytes (KC) to viruses. These immune pathways predominate in various skin diseases: lupus, atopic dermatitis (AD), and psoriasis, respectively. Janus kinase inhibitors (JAKi) are approved to treat both AD and psoriasis, and are in clinical development for lupus. We evaluated whether these cytokines alter viral susceptibility of KC and determined if this effect is modulated by treatment with JAKi. Viral susceptibility to vaccinia virus (VV) or herpes simplex virus-1 (HSV-1) ± JAKi was assessed in immortalized and primary human KC pretreated with cytokines. Exposure to type 2 (IL-4 + IL-13) or the type 3 (IL-22) cytokines significantly increased KC viral susceptibility. Specifically, there was a peak increase of 12.2 ± 3.1-fold (IL-4 + IL-13) or 7.7 ± 2.8-fold (IL-22) in VV infection as measured by plaque number. Conversely, IFNγ significantly reduced susceptibility to VV (63.1 ± 64.4-fold). The IL-4 + IL-13-induced viral susceptibility was reduced (44 ± 16%) by JAK1 inhibition, while the IL-22-enhanced viral susceptibility was diminished (76 ± 19%) by TYK2 inhibition. IFNγ-mediated resistance to viral infection was reversed by JAK2 inhibition (366 ± 294% increase in infection). Cytokines expressed in AD skin (IL-4, IL-13, IL-22) increase KC viral susceptibility while IFNγ is protective. JAKi that target JAK1 or TYK2 reversed cytokine-enhanced viral susceptibility, while JAK2 inhibition reduced the protective effects of IFNγ.


Assuntos
Dermatite Atópica , Inibidores de Janus Quinases , Psoríase , Humanos , Citocinas/metabolismo , Interleucina-13/farmacologia , Interleucina-4/farmacologia , Interleucina-4/uso terapêutico , Queratinócitos/metabolismo , Psoríase/tratamento farmacológico , Dermatite Atópica/tratamento farmacológico , Inibidores de Janus Quinases/farmacologia , Inibidores de Janus Quinases/uso terapêutico , Vírus Vaccinia/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...